225 research outputs found

    Action and behavior: a free-energy formulation

    Get PDF
    We have previously tried to explain perceptual inference and learning under a free-energy principle that pursues Helmholtz’s agenda to understand the brain in terms of energy minimization. It is fairly easy to show that making inferences about the causes of sensory data can be cast as the minimization of a free-energy bound on the likelihood of sensory inputs, given an internal model of how they were caused. In this article, we consider what would happen if the data themselves were sampled to minimize this bound. It transpires that the ensuing active sampling or inference is mandated by ergodic arguments based on the very existence of adaptive agents. Furthermore, it accounts for many aspects of motor behavior; from retinal stabilization to goal-seeking. In particular, it suggests that motor control can be understood as fulfilling prior expectations about proprioceptive sensations. This formulation can explain why adaptive behavior emerges in biological agents and suggests a simple alternative to optimal control theory. We illustrate these points using simulations of oculomotor control and then apply to same principles to cued and goal-directed movements. In short, the free-energy formulation may provide an alternative perspective on the motor control that places it in an intimate relationship with perception

    I overthink—Therefore I am not: An active inference account of altered sense of self and agency in depersonalisation disorder

    Get PDF
    This paper considers the phenomenology of depersonalisation disorder, in relation to predictive processing and its associated pathophysiology. To do this, we first establish a few mechanistic tenets of predictive processing that are necessary to talk about phenomenal transparency, mental action, and self as subject. We briefly review the important role of 'predicting precision' and how this affords mental action and the loss of phenomenal transparency. We then turn to sensory attenuation and the phenomenal consequences of (pathophysiological) failures to attenuate or modulate sensory precision. We then consider this failure in the context of depersonalisation disorder. The key idea here is that depersonalisation disorder reflects the remarkable capacity to explain perceptual engagement with the world via the hypothesis that "I am an embodied perceiver, but I am not in control of my perception". We suggest that individuals with depersonalisation may believe that 'another agent' is controlling their thoughts, perceptions or actions, while maintaining full insight that the 'other agent' is 'me' (the self). Finally, we rehearse the predictions of this formal analysis, with a special focus on the psychophysical and physiological abnormalities that may underwrite the phenomenology of depersonalisation

    Altered effective connectivity in sensorimotor cortices: a novel signature of severity and clinical course in depression

    Get PDF
    Functional neuroimaging research on depression has traditionally targeted neural networks associated with the psychological aspects of depression. In this study, instead, we focus on alterations of sensorimotor function in depression. We used resting-state functional MRI data and Dynamic Causal Modeling (DCM) to assess the hypothesis that depression is associated with aberrant effective connectivity within and between key regions in the sensorimotor hierarchy. Using hierarchical modeling of between-subject effects in DCM with Parametric Empirical Bayes we first established the architecture of effective connectivity in sensorimotor cortices. We found that in (interoceptive and exteroceptive) sensory cortices across participants, the backward connections are predominantly inhibitory whereas the forward connections are mainly excitatory in nature. In motor cortices these parities were reversed. With increasing depression severity, these patterns are depreciated in exteroceptive and motor cortices and augmented in the interoceptive cortex: an observation that speaks to depressive symptomatology. We established the robustness of these results in a leave-one-out cross validation analysis and by reproducing the main results in a follow-up dataset. Interestingly, with (non-pharmacological) treatment, depression associated changes in backward and forward effective connectivity partially reverted to group mean levels. Overall, altered effective connectivity in sensorimotor cortices emerges as a promising and quantifiable candidate marker of depression severity and treatment response
    corecore